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The inviscid flow above an obstacle in slow transverse motion inside a rotating vessel 
is analysed to study the influence of the container depth on the basic steady flow 
structure. An asymptotic theory is presented for an arbitrarily small Rossby number 
Ro = Uo/2511 under a fixed H = hRo/l (where 51 is the angular velocity of the container, 
U, the obstacle velocity relative to the vessel, h the depth of the container, and 1 a 
body length measured transversely to the rotation axis). The equations when linearized 
for a thin obstacle or shallow topography take on the form of the inertial-wave equation ; 
their solutions for non-vanishing H are obtained for obstacles of three-dimensional as 
well as ridge-like two-dimensional shapes. In  all cases analysed, the solution possesses 
a bimodal structure, of which one part is column-like with a vorticity proportional 
to the body elevation (or ground topography). The other part is confined mainly to a 
region enclosing the body, extending a distance O(H*) upstream of the obstacle and 
behind a wedge-shaped caustic front at  large distances; its contribution consists of lee 
waves similar to that discussed by Cheng (1977) for an infinite depth. The field 
associated with the lee waves is then biased on the downstream side, but there is 
little indication of any tendency to tilting in the sense of Hide, Ibbetson & Lighthill 
(1968). 

1. Introduction 
The slow steady transverse motion of an inviscid fluid past a body in a rotating 

system is usually thought of as satisfying the Taylor-Proudman condition that the 
pressure is invariant along lines parallel to the axis of rotation and consequently to 
take on a columnar structure (Greenspan 1969). There are, however, a number of 
experiments in which the depth of the container plays a significant role (Hide & 
Ibbetson 1966; Hide, Ibbetson & Lighthill 1968, hereafter referred to as HIL; Mason 
1975; Maxworthy 1977). A parameter, essentially the product of the ratio of the 
container depth to a dimension of the obstacle and the Rossby number Ro, which we 
shall refer to as H ,  has been identified as having a controlling influence on the flow 
structure. Further, linear unsteady theoretical studies which assume that the depth 
of the container is infinite (Grace 1926; Stewartson 1953) arrive at  a different and 
incompatible conclusion about the steady state from that (Stewartson 1967) which 
takes into account the presence of an upper lid. The time scale of these theories is 
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R-l, where R is the angular velocity of the fluid, and it turns out that  for deep con- 
tainers a larger time scale is needed to achieve steady motion. 

I n  this paper we shall derive a set of equations including nonlinear advective terms 
to describe the final approach to  the steady state a t  arbitrary values of H whose 
solution might be expected to apply to containers of all depths. It then becomes 
apparent that the solution obtained earlier for infinite depth only refers to  an inter- 
mediate time in the evolutionary process and the final steady state for H finite is 
much more complicated. These equations are also consistent with the quasi-geostrophic 
equations obtained by Ingersoll (1969) when H < 1.  I n  order to obtain particular 
solutions we restrict attention to  these obstacles or shallow topography when the 
equations may be linearized and reduce to  a form already studied by Lighthill (1967), 
HIL, and more recently by Cheng (1977) .  The first two of these studies examined the 
propagation of waves in an infinite medium, and the last the disturbance produced 
by motion of a thin obstacle in a tank of infinite depth, the upper boundary being 
replaced by a radiation condition. 

These studies are also of interest in connexion with an experimental result obtained 
in HIL that the Taylor column appears to  be tilted, the angle of tilt being M #Ro, 
where Ro is the Rossby number of the flow. Using his general theory of wave pro- 
pagation, Lighthill obtained the same estimate for the tilt, but, notwithstanding the 
remarkable agreement with experiment, some questions remain. I n  particular, the 
numerical factor was obtained using the solution of a different but related problem 
(Jacobs 1964; Stewartson 1967) for the far field in an infinite domain. Further, as 
Lighthill showed, the waves in the far field generated by the obstacle are confined 
within a wedge extending downstream (i.e. are lee waves) and Cheng’s more detailed 
studies of their properties has revealed that their amplitude does not tend to zero 
with increasing distance downstream. This feature is compatible with the wave 
propagation analysis, but was not taken into account in the earlier studies of tilting. 

Here we complete Cheng’s arguments by adding an upper lid to the domain of flow 
and find that a two-dimensional topography produces a lee wave system which fills 
the entire region downstream and gives no sign of any tilting of preferred directions. 
For three-dimensional obstacles, we identify a bimodal structure to  the steady-state 
solution. Of the two characteristics, one is columnar and partially resembles a Taylor 
column, and the other consists of a lee wave system surrounding the obstacles and 
extending downstream behind a wedge. The column of the first mode does not tilt; 
there is clearly a bias in the lee wave system in favour of the downstream side of the 
body, but i t  cannot be interpreted as a tilt in the sense used by HIL. Thus i t  appears 
that a more general and nonlinear theory is required to explain this phenomenon. 
The lee-wave system has been observed a t  moderate values of H in recent experiments 
by Maxworthy on the effect of ground topography and has qualitatively the structure 
described here. 

2. Governing equations: slow uniform motion of obstacle 
in a deep rotating container 

The weakly nonlinear equations 
Consider the slow motion of a submerged, impermeable body a t  a uniform velocity 
U, relative to an inviscid fluid which is confined between two parallel planes, and 
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rotating with angular velocity Q about a perpendicular axis. We choose a Cartesian 
co-ordinate system (x*, y*, z * )  fixed to the body, with the two parallel planes located 
at z* = 0 and z* = h. Let the velocity components of the fluid be u, v, and w, corres- 
ponding to x*, y* and z*. Only uniform body motions in the lower plane z* = 0 are 
studied in this paper. The undisturbed fluid velocity at  locations far from the obstacle 
may thus be taken as (U,, 0 ,  0).  It is assumed that the transverse dimension of the 
obstacle, I, is small compared to the depth h, as is the relative speed lU,l compared 
to Ql. 

It is reasonable to stipulate that all velocity components are comparable to U,, 
and the length scale characterizing variations in the transverse plane is comparable 
to 1. The z* scale characterizing the axial variation is taken to be h, inasmuch as the 
depth influence is the objective of our analysis. The perturbation pressure from the 
equilibrium value, p * -p:, is scaled by ZpU, a1 as in standard treatises on low Rossby 
number flows. Having in mind a formulation capable of establishing a steady-state 
solution in the limit t * -+ co, we must choose a time scale comparable to the transit 
time for the steady flow around the obstacle, l/U, (instead of i2-l). Thus, we int,roduce 
the following set of reduced variables for the present analysis : 

(2.1) 

x = x*/l ,  y = y*/ l ,  z = z*/h,  t = t*lJo/l; 

u = u*/uo, v = v*/Uo, w = w*/uo;  

P = (P* -P:)/2PUo QL 

Then the governing equations reduce to 

where 

D aP -v+Ro-u = --, 
Dt ax 

~a a a a 
Dt - at ax ay az )  
_ -  +u-+v-+w- 

(2.2a) 

(2.2b) 

(2.2c) 

( 2 . 2 4  

and R o  = UO/2Rl is the Rossby number, assumed to be much smaller than unity. The 
impermeable surface of the obstacle is prescribed as z* = e.lf(x, y), where €1 characterizes 
the height of the obstacle and is at  present 
boundary conditions are [with r = ( 2 2  + y2)*] 

w = O  a t  

an arbitrary number. The appropriate 

(2.3a) 

z =  1 ;  (2.3b) 

T-+co ,  t + c o .  ( 2 . 3 ~ )  

1 
h 

at z = E -  f; 
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An initial condition at t = 0, say, must be prescribed. We note in passing that ( 2 . 3 ~ )  
precludes neither lee waves with undiminishing strength nor an upstream influence, 
if any, in the steady-state limit t + 00. 

Were we to omit the inertial terms associated with the Rossby number from (2.2)) 

These results are, of course, formally equivalent to the Proudman-Taylor theorem, 
and we notice at once that a contradiction with the two boundary conditions for w 
exists, except if 6 = 0, or if the obstacle has a compact supportt over which a pure 
Taylor column with trapped fluid may stand. This possible contradiction and the lack 
of uniqueness [in the vorticity as implied by (2.4)] can be resolved if one includes 
the inertial terms (the unsteady and advective terms a/at + u a/ax, in particular). 
The latter inclusion is permissible for a deep container, for which l / h  is comparable 
to Ro [cf. (2.2c)l. We may accordingly analyse the problem as an asymptotic theory for 
the single limit Ro -+ 0 under a fixed parameter 

A parameter of this type was first realized by Hide & Ibbetson (1966)  in experimental 
studies of Taylor columns, namely e / H ,  defined a s 9  in Mason's (1975) work. 

Assuming that all reduced variables are of unit order as Ro + 0, with H fixed, we 
recover from (2.2) the familiar linear geostrophic relations among u, v ,  and p to the 

( 2 . 6 ~ )  
leading order 

= -ap/ay, 

v = appx.  (2.6b)S 

Using these to eliminate u and v ,  we obtain from (2 .2~)  

and from (2.2d) 

Y)  

( 2 . 7 ~ )  

( 2 . 7 b )  

where V; = az/ax2+ a2/ay2. The right-hand members of the last two equations are 
generally nonlinear, signifying a departure from the Proudman-Taylor theorem (2.4), 
and their contribution is now seen to be controlled by the parameter H .  The remainders 
in (2 .7)  may be seen to be of order HRo,  and the terms omitted from (2.6) are O(Ro).  
Therefore, the equations are valid for all depths, so long as the reduced variables and 
their derivatives remain of unit order. The boundary condition for w on the obstacle 
in ( 2 . 3 ~ )  can now be transformed to the plane z = 0 as 

( 2 . 8 ~ )  

t That is, the elevation must vanish beyond a certain distance from the obstacle. 
$ The terms omitted on the right of (2 .6a )  and (2 .6b )  are, respectively, 

-Rorp,,+a(p,p,)/a(~,Y)l+O(Roa,Ro~/H) 
and -Wp,tf a(p,p,)/a(z,y)l+ O(Roa,Ro2/H). 
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with an error comparable to zaplaz a t  the surface, i.e. O(sRo). The other conditions 
of (2.3) are unaffected and repeated here for convenience: 

w = O  a t  z = 1 ,  (2.8b) 

(pz,pg,w)+(O, - 1,0) as r+m, t < co. ( 2 . 8 ~ )  

With prescribed initial data, (2.7) along with boundary condition (2.8) can be solved 
for p and w. 

It is clear from (2.5)-(2.8) that a formal degeneracy resulting from an unbounded 
H can be eliminated by taking a new axial variable 2 = H z ;  except for a slightly 
different definition of the Rossby number (Cheng used 3 = Uo/!21), and writing 0 
for H ,  (2.5)-(2.8) in body-fixed co-ordinates and those given in Cheng (1977) in con- 
tainer-fixed co-ordinates are completely equivalent. 

As H + 0,  it appears, and will be confirmed by more detailed analysis below when 
E/H < 1 ,  that the columnar structure fills the entire depth of the container. However, 
aw/az is not necessarily zero as in (2.4). In the steady state 

w = €( l -z ) -  a(f PI vz ,p  = - -+g(p)  E f  Y 1 ’ H (2.9) 

is a consistent solution of (2.7) and (2.8) where g is an arbitrary function. Thus our 
basic theory reduces to Ingersoll’s ( 1  969) quasi-geostrophic model in the limit H -+ 0. 
If all streamlines originate in a region of uniform flow g = 0 and then it may be shown 
(Huppert 1975) that this assumption is self-consistent provided 8 6 O ( H ) .  For larger 
values of E closed streamlines appear above the obstacle and g is then partially in- 
determinate. At finite values of E and for a finite obstacle g may be found either by 
an appeal to an initial value problem (Stewartson 1967) or viscosity (Jacobs 1964); 
in each case the trapped fluid is stagnant and 

w = 0. (2.10) 

These flow properties are broadly observed in the experiments of Hide & Ibbetson 
(1966) and Maxworthy (1970). 

Such a structure of the steady state solution of (2.7) and (2.8) is also possible when 
H $. 0 for finite obstacles, but is unlikely to occur in practice. For as we shall show 
below, a lee wave structure is set up in this case even when 8 < 1 generating motions 
violating (2.10). 

Another form of columnar structure was obtained for transverse flow of a sphere 
in an unbounded fluid (Grace 1926; Stewartson 1953). When at* & 1 the relative 
motion appears to be generally steady with a continuous transverse velocity dis- 
tribution and mass flux through the column. However, the governing equations they 
used do not include the advective terms of (2.7) and it was tacitly assumed that 
Uot* < 1. Thus it is only relevant to an intermediate stage in the evolution of the 
flow field. The idea underlying their study is nevertheless valid, i.e. a physically 
meaningful steady state solution must be approachable at  sufficiently large times 
from an arbitrary initial state. In  this way also we eliminate the need for specifying a 
radiation condition for the steady state. We shall now exploit it further to determine 
the properties of such solutions in simple cases so as to throw additional light on the 
structure of the steady flow when H > 0. 
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Linearization for thin obstacles 

We now assume that the obstacle is thin or the ground topography is shallow, i.e. 
E < 1, which is not expected to severely limit the validity of our conclusions regarding 
the scalings and certain general features of the flow (the far-field structure a t  r >> 1 
in particular). 

With the substitutions w = ew', p = - y+ep', the governing equations (2.7) and 
(2.8) simplify for fixed H ,  after neglecting terms of O(e2) ,  to 

(2.1 1 a )  

together with the boundary conditions 

w ' =  af/ax a t  z =  0 ;  w'= 0 at z = 1; (2.1 1 b)  

(p;,p;,w)+(o,o,o) as r+m, t <a, (2.11c) 

with some initial conditions a t  t = 0. The transverse velocity u and v can be computed 
from p' (with remainders of order ~ R O )  as 

= 1 -capi/ay, v = E a p p x .  (2.12) 

The two differential equations (2.11 a )  can be combined to yield 

[H2(i+k-'V:+$] p' = 0, (2.13) 

which, except for the difference between Vf and V2 = Vf + a2/az2 is essentially the 
inertial-wave equation in the body-fixed co-ordinates. The solution of (2.13) has been 
studied by Lighthill (1967) and Cheng (1977)) with emphasis on the limit H+m 
(after replacing z by2 = z / H ) .  I n  this limit it  was found that the disturbance of the 
flow due to an obstacle with finite displacement volume is, a t  large distances, largely 
confined within a wedge x > 2t ]y (  in which lee waves are set up whose wave length is 
roughly proportional to 2 /x ,  with an amplitude of p' comparable to 112, undiminishing 
in the downstream direction (x /y+co) ,  and an amplitude of v diverging with x like 
x/z2. Cheng (1977) is also able to describe how these lee waves become evanescent 
when x < 2t(yl, and their behaviour near the caustic x = 231y(, as well as the structure 
of the caustic itself. Here we shall extend the theory to cover H = O( 1) SO as to bridge 
Cheng's (1977) solution with that for H < 1 and determine the solution properties 
both for two-dimensional and three-dimensional flows. We shall show that several 
properties found for H -+ co are in fact universal for all H + 0, especially the lee wave 
structure extending to a considerable distance downstream. On the other hand, a 
distinctly different, column-like feature emerges as a part of the solution for finite H .  
I n  view of the coexistence of this and the other (lee wave) features, the flow may be 
said to possess a bimodal structure. 

Solutions to (2,11),  or to (2.13) with w' = af/ax replaced by aplaz = - Ha2f/ax2 in 
(2.1 1 b) ,  are studied for ridge-like obstacles in 3 3, and for finite three-dimensional 
shapes in $ 4 .  For convenience, the primes in p' and w' are omitted hereafter. We 
observe in passing that the linearization leading to (2.11) requires e < 1 under a fixed H .  
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3. The ridge 
Solution for arbitrary projiles 

When the obstacle takes the form of a narrow ridge, the flow in a plane normal to the 
ridge line becomes essentially two-dimensional, and if we take they axis along the ridge, 
(2.10) reduces to 

We notice a t  once that the boundary conditions on w alone do not fix p uniquely in 
this case, for there are solutions of (3.1) of the form 

= p = ~ f i ( t ) + f 2 ( t ) + f 3 ( x - t t ) ,  ( 3 4  

where fi, f 2 ,  f3  are arbitrary functions. Of these f 3  represents a wave travelling with the 
fluid, and therefore is carried far away from the obstacle a t  large values oft. The other 
two terms represent trapped disturbances, and it is conceivable that they make 
contributions to p ,  and even to v,  in the neighbourhood of the obstacle without 
affecting w. However, these functions cannot be arbitrarily added to the solution 
desired, since they contradict the requirement ( 2 . 1 1 ~ )  for all t + co. We shall return 
to this point below. 

Let F(w)  be the Fourier transform of the displacement f ( x )  with respect to x [cf. 
(2.1 1 b)] ,  and let p ( x ,  z ;  s) denote the Laplace transform ofp with respect to t .  Further, 
let us take the initial conditions of the problem, a t  t = 0,  to be w = 0,  a2p/ax2 = 0 
for all x ,  z. It is not expected that this choice of initial condition is significant for the 
final solution as t --f co. The solution of (3.1) satisfying the boundary condition (2.11 b)  is 

- l W  cos {wH(w - is) (1 - 2)) 
p = -1 e*wzp(w) dw. 

2ns - m  sin {wH(w - is)} (3.3) 

The contour of integration is the real axis of w except for an indentation above or 
below the pole a t  w = 0. The uncertainty here is associated with the apparent non- 
uniqueness of p discussed in connexion with (3.2). To fix matters we shall, to begin 
with, choose the contour to pass below the origin; later we shall give the solution 
when the contour passes above w = 0, but below the pole at w = is, of course, the 
velocity field is shown to be unaffected by the choice of contour. 

Example : top-hat ridge 

As a first example, let us consider a top-hat ridge in which f ( x )  = 1 if 1x1 < 1,  and is 
zero otherwise. Singular behaviour is to be expected in the solution in the neighbour- 
hood of x2 = 1 but is merely a local phenomenon and, as we shall see, may easily be 
eliminated by choosing a smoother form for f. As a matter of fact, the singularity is 
rather weak in spite of the discontinuities in the surface elevation a t  x = ~f: 1. For 
this case, 

and, in order to evaluate (3.3), we consider 

(3.4) 

exp (iw(z + 1)) cos [wH(w - is) (1 - z ) ]  
P + ( X ,  2; s) = -. dw. (3.5) 2sn2 w sin wH(w - is) 
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This integral is evaluated by completing the contour with a semi-circle, above the real 
axis if x +  1 > 0 and below the real axis if x +  1 < 0. Further, since our interest is 
entirely in the solution properties when t 9 1, we take s real and positive with 
sH* << 1.  The value of P ,  then depends on the residues of the integrand at  its poles, i.e. 

and 

1 x + 1  exp [ - s(x + I)] 
at  w = is, -- --- 

gniH [ s2 st] at = - 2 i n s 3 ~  

exp ( T wn( 1 + x)) cos nnz 
4n2nsi 

- at o = _+ ion + O(s) 

exp ( iwn( 1 + x)) cos nnx is 
at w = & w, + - + O(s2), (3.6) 4n2nsi 2 

where w, = (nm/H)) and n is a positive integer. The residues a t  those poles for which 
Im u > 0 are relevant to p when x + 1 > 0, and the rest when x + 1 < 0. Hence, 

I 
, if x + l  < 0; 

" cos wn( 1 + x) cos nnz 00 ~ X P  [ - w n ( 1 +  x)I cos nnz + x 
2nns n = l  nns 

2nns 

- c  
n= 1 

" exp [on( 1 + x)] cos nnz , if x + l  < 0. P + =  c 
n= 1 

Similar results are obtained when x +  1 is replaced by x- 1 in (3 .7 ) ,  and so, on sub- 
tracting the two and examining the residue at  s = 0,  we obtain the ultimate pressure 
distribution for t -+ 00 due to the obstacle defined by (3.4). This is 

1 " l  
nn=ln 

p N - C. -exp(w,x)sinhw,cosnnz if x < - 1 ,  (3.8a) 

2 1 " l  

2H nne1n 
p N -~ (x+ +- 2 - exp ( - w,) cosh (wnx) cosnnz 

and 

1 O0 cos wn( 1 + x) cos nnz 
-- c 

nn=l  
if 1x1 < 1, 

n 

2x 1 " l  
H n n e l n  

p N -- + - C - exp ( - on x) sinh w, cos nnz 

2 " l  

n n = l n  
-- C -sinw,sin(w,x)cosnnz if x > 1.  

(3 .8b )  

(3 .8~)  

All the above series converge. 
This solution, with the choice of the contour passing below w = 0, satisfies the 

upstream requirement (2.11 c ) .  The consequence of taking the alternative contour is 
to transfer the residue of the pole at  w = 0 to the lower half-plane for x+  1 > 0,  and 
the final effect is to add a term t / H  to the final solution ( 3 . 8 ) ;  thus there is no difference 
to the velocity field. 

When x c - 1, the series for p converges and the sum decays exponentially as 
x -+ - a; the upstream influence of the ridge can be seen from the argument 

w, x = (nn/H)* x 
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in (3 .8a )  to be limited to a distance of x = O(H6). As H +m, this distance formally 
increases indefinitely but the magnitude of p upstream becomes vanishingly small by 
virtue of the factor sin hw, N w, = O ( H d )  in (3 .8a ) .  On the plane z = 0,  the solution 
develops a logarithmic singularity on approaching the leading edge 

p - z n ( ~ o g T + y ) ,  1 Ix+11277 as x - f - I ,  
(3 .9)  

where y is Euler’s constant, but remains bounded for z > 0. This is not surprising, 
since the theory cannot be expected to make physical sense at  the corners of the 
top-hat and the singularity disappears if the corners are smoothed off. 

Downstream, i.e. x > 1, the pressure field ( 3 . 8 ~ )  consists of three parts. First, there 
is a linear term in x with a corresponding uniform velocity - 2 / H  in the y direction. 
In  physical terms, this velocity is - 4Q12e/h, i.e. - A f / h ,  where A is the cross-sectional 
area of the ridge and f = 2Q is the Coriolis parameter. Assuming that inertial terms 
may be neglected, one can make a rather simple argument leading to this result (e.g. 
Prandtl 1952; Batchelor 1967). The second contribution arises from terms which 
decrease exponentially as x is increased, and play a similar role to those for x < - 1. 
The third contribution consists of an infinite series of oscillatory terms which do not 
decay as x -f 00, and its analytical behaviour will be studied further in the appendix. 
Thus, the notion that the effect of the ridge on a low Rossby number inviscid flow is to 
deflect its direction by means of the velocity component - A f / h  parallel to the ridge 
is seen to be an oversimplification. As H -+ 0 however this effect dominates, since the 
lee wave contribution to the pressure is at most O[log ( x / H ) ]  and to the velocity field 
is O(H-6). An immediate consequence is that when H << 1 the linearization (2.11) is 
strictly only valid if c /H  < 1;  in view of (2 .9 )  however it is also valid if E = O ( H )  and 
closed streamlines have not appeared in the flow field. 

Example : smooth ridges 

The integral in (3 .3 )  can also be evaluated on a series for smooth ridges and is then 
free of edge singularities such as (3 .9 ) .  For example if f ( x )  = ( 1  -x2) for 1x1 < 1 and 
f ( x )  = 0 for 1x1 > 1 so that 

F(w)  = - (3.10) 

The only significant charge in the solution is that the coefficient n-1 in the series of 
(3 .8 )  is replaced by another O(n-2) as n-tco, thus improving convergence properties 
and ensuring that p is continuous at  x = f 1.  An important consequence is that the 
lee waves are weaker as H -+ 0, their contribution to the velocity being O( 1).  In fact 
the smoother the ridge the weaker the lee waves are when H << 1 ; thus if 

1 
f W  = 1 $ - s 2 ,  F(w)  = vexp [ - Iwl]  (3.11) 

the pressure field is smooth everywhere and the lee waves are exponentially small as 
H+O.  
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X 

FIQURE 1. The function @,(z) for the lee wave behind a top-hat ridge a t  the bottom (z = 0) and 
the function ~z(z) for the lee wave behind a top-hat ridge at the top (z  = 1). 

The lee waves 

The lee wave contribution to the pressure on the plane z = 0, downstream from a 
top-hat ridge, is given by the last series of (3.8 c). On the plane z = 0, it can bewritten as 

(3.12 a) 

(3.12 b) 
“ 1  

,=In 
where $l(x) = -cos(xnt). 

This function has not received much attention in the past, but Hardy & Littlewood 
(1913) have establishedits convergence for x > 0. At large values of n, the terms of the 
series may be replaced by integrals, and so the sum can be explicitly found, partly 
by the direct addition of a large number (1200) of the terms and partly by using an 
asymptotic formula for the remainder. The graph of is displayed in figure 1 
(upper curve) ; it appears to be smooth and oscillatory, with no particular frequency, 
and does not die out as x+co. On the other hand, it is shown in the appendix that 

< 2 log x + 10 for all x > 1.  It may be differentiated once, even though term-by- 
term differentiation of the series fails to converge and it is even possible that @l is 
quite smooth. On the other hand, we know that when nt is replaced by n in (3.12b), 
the resulting function is singular a t  x = 2nn (n = 0,  1,2,  . . .). 

The lee wave structure for z 4 0 may be exemplified by taking z = 1. The contribu- 
tion to the pressure is similar to (3.12) with $l replaced by $2, where 

m 
$hz(x) = y c o s ( x $ .  

n=l 
(3.13) 

The series again converges, and a graph of the function is shown also in figure 1 (lower 
curve). Again it appears to be smooth and irregularly oscillatory and does not die 
out as x+m. 

The lee wave structure is seen from above to fill the entire region of flow downstream 
of the ridge, and (unlike the implication of HIL) there is no tendency for the disturb- 
ances to concentrate in a finite region above and behind the ridge. The velocity field 
associated with the lee waves behind its ridge is accordingly O(H-3)) whereas the 
lateral drift velocity is of - x / H .  Thus, lee waves prevail when H is large, and the 
lateral drift dominates when H is small. 
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4. Three-dimensional obstacles 

x and y in (2 . l lb) .  We define 
We now consider thin obstacles which are three-dimensional, i.e. f is a function of 

J - w J - m  

and then the formal solution for the Laplace transform of p to (2.11) is 

cos [H(w - is) (w2+ a2)t (1  - z ) ]  

sin [ H ( o  - is) (w2+ a2)4 ]  

00 

exp (iwx + iay) 
- m  

where Po is 

dw d 5 .  wF(w, a) 
H ( w  - is) (w2 + a 2 )  

m 1 
exp (iwx + i5y) (4.3) 

As t+ co the integral in (4.3) leads easily to 

v:: Po = -f (x, Y ) lH  (4.4) 

so that this contribution to the pressure may be identified with Ingersoll’s (1969) geo- 
strophic form when H < 1. The solution of (4.4) for the spherical cap 

f(x,y) = 1-r2 if r < 1, f(x,y) = 0 if r > 1, (4.5) 

(4.6) 
47r 

F(w, 4 = @ [ 2 J W  + RJ,(R)I, 

where r2 = x2 + y2, R2 = w2 + u2 and J, is a Bessel function, is 

i po = -$H-’logr+A,, 

p ,  = 

r > 1, 

1 
(&r4 - &r2 + &) +A,, r < 1, 

(4.7) 

where A, is independent of position. The corresponding motion in the x, y planes is a 
generalized Rankine vortex with constant circulation outside the cap and variable 
vorticity above it. The normal component w is linear in z above the cap and zero 
outside it, again in line with Ingersoll’s form (2.9) as H -+ 0. 

The solution of (4.4) can also be found for smooth bodies, a simple example being 
the topographical feature 

and po = - &H-1 log ( 1 + x2 +‘y2) + const. (4.9) 

Now let us examine the contribution from the double integral of (4.2), designated 
hereafter as p,. For obstacles which decay monotonically to zero as x2, y2 + co, the 
poles of F may be expected to lie off the real axis of o, when a is real, and their effect 
on the flow field confined to their neighbourhood. A similar remark applies to the 
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zeroes of sin[H(w-is) (w2+(r2)t]  qua function of w when s, CT are real, except those 
in the neighbourhood of the real axis as s --f 0. Hence, we may take the solution in $ 3  
to be typical of the solution here upstream of the obstacle, i.e. the disturbances decay 
exponentially. Above the obstacle, there are no features of this part of the solution 
of special interest. Downstream, in addition to the exponential decay from the poles 
well away from the real axis of w, there is a lee wave structure determined by the poles 
lying just above the real axis of w when s is small. These make a contribution pl(x, y) 
to p in the limit t --f 00, where 

p( - w, h, w, p )  exp ( - iw, hz + iw,py) dp, (4.10) 
i "  

and w, = (nm/H)t, h = [ - $pe+ (1 + fp4))p. (4.11) 

It is immaterial whether we regard h as positive for all p or permit it to change sign; 
it is only necessary to rearrange the integrals in (4.10). Since there are advantages 
to be gained in simplicity from taking h to be analytic, we now change the definitions 
slightly and write 

~ p = ( 1 - ~ 4 ) + ,  - i < h < i .  (4.12) 

Then a typical integral of (4.10) to be evaluated is 

Q,(X,Y) =Im - , l+h4 h S ~ ( w , h , w , p ) e x p ~ i w , ( h r ~ ~ y ) ~ d ~  (4.13) 

1. The dominant contributions and we are especially interested in its value when w, x 
to (4.13) arise from the neighbourhood of the cols a t  

(4.14) 

Suppose first that y > 0 and z2 > 8y2, i.e. inside the Lighthill (1967) wedge.? Then 
the relevant saddles are at  h = k A,, k A,, where A,, he are real and 

(4.15) 

The integral in (4.13) may now be evaluated using the method of steepest descents 
provided that F is bounded (e.g. ridges are excluded). We find that pl is dominated 
by the sum of two terms when wix 4 1, one of which is 

where X,,  = @,(A, z +pl y) - $7~. The other is the same except that (3h: - 1)  is replaced 
by 1 - 3 4 ,  A, and p1 by A, and pz and X,,  = wn(hzx+p2 y) + )T. In  computing (4.16) 
it should be remembered that only saddles on the real axis of w are relevant so that 
the contribution from an integral like (4.13), with h changed in sign, is negligible. A 
formula similar to (4.13) may be obtained when y < 0 and x2 > 8y2. 

t The wedge-shaped front y = f 2/2# is identioal to that in Kelvin's ship waves. 
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On the other hand, when x2 < 8y2, the possible cols are eight in number and all are 
complex, being given by 

2y2 & i x (  8y2 - X2)tI .  (4.17) 

Half of them may be excluded depending on the sign of y ,  and of the remainder it is 
possible to choose the path of integration in (4.13) to pass only through those two 
which ensure that the integral is exponentially small. The evaluation of the integral 
is a technical task and would follow closely the earlier study of Cheng (1977)) which 
also provides a discussion of the special features of the integrals like (4.13) when 

The chief features of the steady-state flow past an obstacle, whether of compact 
support or not, are first a cylindrical flow in the x, y plane with a vorticity pro- 
portional to the elevation f ( x ,  y )  and inversely proportional to H ,  which has no 
tendency to tilt and an axial velocity component varying linearly from a prescribed 
form at z = 0 to zero at z = 1.  Secondly, the;e is a distinct upstream influence extending 
a distance = O(H3),  decaying exponentially with x. There is a similar contribution 
downstream, but this is swamped by the third feature: far downstream of the obstacle 
(if it is finite in extent, and broadly downstream of the highest point if infinite), there 
is a complicated lee wave structure bounded by the wedge surface x = k 2(2y)8. 
Outside this wedge, the lee waves make an exponentially small contribution to the 
flow field, but inside they take on a quasi-random oscillatory character in the variable 
x /Hh  with an amplitude decaying like x-& as x increases, for all finite H .  

The first, cylindrical part of the solution, i.e. po, cannot be cancelled completely 
by p l  which possesses the second and the third features, because a t  large transverse 
distance the p field is dominated by the cylindrical p o  which behaves like the stream 
function of a vortex and does not decay to zero a t  infinity. The lee wave velocity field 
is however dominant in the Lighthill wedge when x 9 1. In this sense, the solution 
may be said to possess a bimodal structure. 

When H 9 1, w, < 1 for finite n, and in the calculation of the series (4.16) for the 
lee waves F is virtually a constant equal to the volume of the obstacle. The series is 
however now even less convergent than (3.12) and may even diverge. In  this case it 
would be necessary to examine more carefully the terms of the series when n = O(H) .  
The lee wave pressure is certainly 2 O(H-8) and the velocity field 2 O(H-4) so that 
they dominate the geostrophic motion which is inversslly proportional to H .  

When H 4 1 the amplitude of the lee waves is linked as in two dimensions to the 
degree of smoothness of the obstacle. If they are perfectly smooth [e.g. (4.8)] the 
amplitude is exponentialIy small while for a spherical cap with a corner at r = 1 
[(4.5), (4.6)] p 1  = O( 1 )  and even so is much weaker than the geostrophic contribution, 
which is O(H-l).  

x2 z 8y2. 

5. Discussion 
In this paper we have considered relative fluid motion about a shallow topographic 

feature when the ratio of its lateral dimension to the depth of the rotating fluid is 
comparable with the Rossby number, i.e. H = O( 1) .  For an inviscid fluid, the unsteady 
flow field asymptotes to a bimodal structure as t -+ 00, one part consisting of an untilted 
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cylindrical motion similar to a Taylor column; the other giving a smoothly decaying 
motion upstream, together with a lee wave system, originating at  and above the 
feature and filling a wedge region far downstream. In no case does the solution require 
a topography with compact support. Similar remarks apply to two-dimensional 
component flows above narrow ridges. Our analyses have been limited to inviscid 
problems linearized for thin obstacles, although the nonlinear basic equations derived, 
(2.6)-(2.9), are equally applicable to thick bodies. 

Damping mechanism and Ekman pumping 

Even for thin obstacles, the viscous damping of the lee waves and suction/pumping 
effect of the Ekman boundary layer may modify the inviscid solution significantly. 
Consider the ridge analysis as an example. First,e xtra terms have to be added to the 
right-hand sides of (3.1),  namely 

H E ~ ~ W  and H E  a4p -- 
2 Ro ax2 2Ro 8x4’ 

respectively, where E = v/QP is the Ekman number and v is the kinematic viscosity. 
A typical lee wave now has the form w = sin (nm) exp (ax ) ,  and if Ro E 

and the real part of a is the inverse of the e-folding distance. Second, Ekman layers 
are set up near each of the bounding planes and the pumping conditions may be 
written as 

at 2-4 = -k*, (5.3) 

from which the e-folding rate of decay of the lee waves is 2HE-6. Thus for these lee 
waves to be seen in an experiment, it  is essential that 

This last condition has a bearing on the question of the existence of a column with 
stagnant trapped fluid discussed in 3 2. If such a column developed when B = O( 1) the 
E* layer at  its outer boundary must separate. The condition for this is Eh/H < 2 and 
follows from Boyer’s (1970a, b)  experiment and the theoretical studies of Walker & 
Stewartson (1972, 1974). Hence such a column can be expected to generate a wake. 

Lee waves and the bimodal structure 

Cheng (1977) has shown that lee waves with an undiminishing strength are salient 
features of the far field ( z  & H ,  x & y) in the problem for an infinite domain. The 
present study confirms the prevalence of lee waves and shows that this feature remains 
in a container of finite depth, so long as H 9 0. On the other hand, another distinctly 
different feature, the cylindrical mode, emerges. At large transverse distances, the p’ 
field is dominated at H = O(1) by the untilted, unwavy cylindrical mode p,, which 
behaves generally like the stream function of a vortex and is responsible for the 
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stream deflection at  the ridge in the two-dimensional case. We note that, unlike the 
solution for H+m, the pressure perturbation in the lee wave mode for a finite H 
decays (roughly like x-3) far downstream; on the other hand, the velocity field at  large 
distances is dominated by lee waves, unless H becomes very small. The cylindrical 
mode p ,  is the same as Ingersoll’s geostrophic flow (1969) valid when e < O(H) Q 1 
and under these corlditions the lee waves are weak. 

There is little evidence for the existence of lee waves at  finite values of H in earlier 
experiments, the primary reason being the relatively large value of E in the operating 
conditions, but they are clearly present in the recent studies by Maxworthy (1977) on 
the effects of ground topography. Here a ridge, spanning radially across the annulus, 
is mounted on the base of the tank, which rotates a t  a slightly lower rate than the top 
and the annular channel walls. Distinct meandering streamline patterns extending 
many chord lengths downstream of the ridge are consistently found on the photo 
records for tests corresponding to the larger values of H .  A quantitative comparison 
with our ridge theory (in $3)  is not possible a t  the present time, because the finite 
width of the annular channel and the breakdown of the solution at  impermeable end 
walls has not been accounted for in the two-dimensional theory. Figure 2 (plate) 
shows typical streamline photographs (kindly provided by Dr T. Maxworthy) selected 
from unpublished records for high aspect ratio ridges not shown in Maxworthy’s 
(1977) original paper. The cross-section of the lenticular obstacle has a thickness ratio 
6 M 4. In figure 2 ( a )  H = 0.155, Ro = 0-071, E = 0.00019 and lee waves are not very 
apparent. They are more in evidence in figure 2 ( b ) ,  for which H = 0.46, Ro = 0.071 
and E = 0.00234. An almost identical pattern is seen in figure 2 (c) ,  for which H = 0.45, 
Ro = 0.069 and E = 0.00060. The pattern observed is evidently consistent with, and 
predictable by, our inviscid theory; this is not surprising, in spite of the presence of 
some viscous damping, since lee waves in the two-dimensional case are stronger than 
those in three dimensions (3-D), and, unlike their 3-D counterparts, do not diminish 
downstream. We note that figure 2 confirms not only the persistence of lee waves 
behind a ridge, but also the deflexion of the mean fluid trajectories corresponding to 
p,. Similar photographic records have also been made by Maxworthy in an unpublished 
related study for finite three-dimensional obstacles. 

Questions on tilting 

In  HIL (1968), a tilting of Taylor column above a sphere with a small (mean) angle 
SjRo is deduced from experimental data, and an explanation is given on the basis of 
Lighthill’s (1967) study on inertial waves in the far field. We shall discuss the questions 
on tilting in the far field and in HIL’s experiment as two separate issues in the light 
of the foregoing analysis. 

From Cheng’s (1977) work, one may quite readily see that lines or curves along which 
certain flow properties are invariant (if they are properly defined) have a backward 
tilting angle comparable to Ro (on account of the bias toward downstream), but there 
is no ‘tilting of the Taylor column’ in the sense of HIL. This is because: (i) the lee 
wave trains with undiminishing strength continue far beyond the region covered by 
rays x /Hz  = O(1) (like a curtain); thus, in its outward extension, the field above the 
Taylor column loses its solitary feature, and therefore a column, tilted or not, does 
not exist in the far field; (ii) the tilting angles differ among different flow properties 
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and are not uniform along wave crests; therefore, a distinct tilting angle does not 
exist. Whereas the equations used in our analyses are basically similar to those in 
Lighthill’s (1967) study, the different conclusion of HIL (1968) regarding tilting 
results mainly from the assumption implicit in their argument that disturbances do 
not spread far beyond x / H z  = O( 1). It is interesting to observe that, for the case of a 
finite H ,  the part oflp (not v M ap/ax) contributed by the lee wave system has a 
decaying amplitude at large x like x-8, and one could very well interpret it  to be a 
‘tilted column ’ if not for the presence of the other untilted, cylindrical mode, p,, which 
dominates the far field of p .  

We return now to the tilting experimentally observed in HIL. The values of the 
parameter H (estimated from table 3 in HIL) ranges from 0.34 to 5-74, and the flow 
should not be regarded as approaching the case H + m analysed by Lighthill (1967) 
and Cheng (1977), especially because the tilting data are not taken near the top of the 
tank. For a blunt obstacle, the study in this case would call for use of the nonlinear 
equations (cf. §2),  thus the remarkable agreement of tilting angles estimated by 
Lighthill’s (1967) linear theory (appendix HIL) and that recorded in the experiment 
therefore can not be regarded as evidence supporting the theory. It is interesting to 
note that lee waves are not apparent in the experiments of both HIL (1 968) and Hide 
& Ibbetson (1966), but the requirements for an inviscid model are not satisfied there. 
In  HIL, 0.05 < H < 5 ,  0.002 < Ro < 0-02, 0-003 < E < 0.03, and taking median 
values, EIHRo 2EiIH N 0.2. In Hide & Ibbetson, H - 0.03, E - 0.0005, Ro 2: 0.008 
so that E / H R o  - 2, E i I H  - 1.5. In  order to make avalid comparison with these experi- 
ments it is desirable to obtain anumerical solutionof the nonlinear equations (2.7)-(2.9) 
incorporating the effect of viscosity by adding terms similar to (5. l), and by modifying 
the boundary conditions on w with terms similar to (5.3), which reflect the dependence 
of p on y as well as x. A useful start has been made by James (1977, private com- 
munication) by neglecting (2.7) and, instead, assuming that w is linear in z. The flow 
patterns obtained show an encouraging agreement with some of the observations. 

The authors are grateful to Dr S. N. Brown for summing the series in 9 3 and providing 
the figures, and Mr H. Kestelman and Professor G. L. Watson for providing the 
arguments which led to the proofs in the Appendix. The plates in figure 2 were 
obtained from unpublished photos furnished by Professor T. Maxworthy, who called 
our attention to the presence of lee waves in his experiments. 

Appendix 
We wish to prove that 

is a continuous function of x and to obtain a bound on its magnitude. Define 

and 
n 

m=1 
S(x,n) = C exp(ixni), 
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so that 

Now, i f m  is the least integer greater than or equal to 6, 

and so ( S ( x ,  n) - J ( x ,  n)(  < - c-idk = xna. 
:!on 

From (A 3) it  follows that 

and from (A 2), (A 6) that 
( 4 x ,  n)l 6 n 

43 1 

(A 4) 

Hence S ( x ,  n) = O(n i )  for all fixed x > 0 and s o f ( x )  is uniformly convergent in any 

Further, if N is the least integer exceeding x2 and x 2 1 we may estimate (f(x)J by 
positive interval of x. Consequentlyf(x) is continuous in the open interval (0, a). 

using (A 7) for n < N and (A 8) for n > N. Then 

6 2logx+lO* 
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FIGURE 2. Photographs of streamline patterns over a lenticular trarisversc ridge a t  tlie base of a 
rotating tank. The flow over tho ridge modcl is driven by a differentially ratat.irig top plate. The 
Iicigbt/widt.li ratiooft~licobst,aeleis0~261. (u) X o  = 0 4 7 1 ,  H = 0.155,E = 0.00019; (6) Ro = 0.071, 
H = 0.46, Ii: = 0.00234; (c) R o  = 0.069, H = 0.451, I< = O.OOO(i0 (courtcsy of 7'. Masworthy). 
Note that tlie ICkrnari riurnber I3 is bascd on t>lie lengtli 1. 

STEWARTSON AND CHEXG (Facing p .  432) 


